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Abstract

We propose a kinetic description of the particles in an electron cyclotron resonance ion source (ECRIS) for highly

charged ion production. The electron distribution function (EDF) is solution of a Fokker–Planck equation in velocity

space. A new finite-volume scheme for the computation of the EDF is presented. The system is azimuthally symmetric.

A two-dimensional, structured grid of quadrangles is used to describe the geometry in spherical polar coordinates ðv; lÞ.
The temporal stiffness problems are addressed with a semi-implicit method of time integration. Evaluation of the co-

efficients of the collision operator requires derivatives of the Rosenbluth potentials in every time step. The computation

is accomplished through parallel implementation. Examples of the application of the algorithm are given and the role of

the different design parameters is studied.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

An ECRIS is a mirror machine for producing multicharged ion beams [1,2]. Fig. 1 shows a schematic

drawing of an ECRIS. It is an open-ended magnetic trap that confines a hot electron plama. Two coils (1)

and (2) produce a mirror field and a multipole (3) generates a radial field. The resulting field leads to a

minimum-B structure. A radio-frequency (RF) wave is injected into the plasma to heat the electrons. The

magnetic configuration leads to a closed resonance surface (4).
*Corresponding author. Tel.: +33-4-3878-4365; fax: +33-4-3878-5160.

E-mail addresses: agirard@cea.fr (A. Girard), Christian.Lecot@univ-savoie.fr (C. L�eecot).

0021-9991/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0021-9991(03)00312-7

mail to: agirard@cea.fr


Fig. 1. Electron cyclotron resonance ion source.
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The electrons are trapped in the plasma chamber by the mirror effect. The mirror ratio Rm is defined as

Rm ¼ Bmax=Bmin, where Bmax and Bmin are the maximum and minimum magnetic inductions, respectively.

Electrons whose velocity is mainly parallel to the magnetic field are not confined. The loss region is defined

as the region where electrons are not confined. We employ a spherical coordinate system in velocity space,

v ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
cosu; v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
sinu; vl

� �
; ð1Þ

where l ¼ cos h and h ¼ 0 corresponds to the direction of the axial magnetic field (z axis). The system is
then azimuthally symmetric and has a reflection symmetry about the midplane l ¼ 0. Following [3], the loss

angle is given by sin2 hLC ¼ 1=Rm. Since the scattering rate of electrons is greater than that of ions, more

electrons than ions will tend to leak out of the ends of the device. An ambipolar potential will build up,

being greatest at the center and decreasing towards the ends. If U is the electrostatic potential, the electron

loss region is defined by

sin2 h6
1

Rm

1

 
�
v2pe
v2

!
: ð2Þ

Here v2pe ¼ ð2e=meÞU, me is the electronic mass and e is the electronic charge. The electron loss region is

shown in Fig. 2. We denote by fe the EDF. If we assume that electrons in the loss region are lost imme-

diately then we set fe ¼ 0 on the loss region boundary.

The losses of electrons are due primarily to the scattering of particles by classical Coulomb collisions into

loss regions. The description of this process is given by the Fokker–Planck equations as derived in the paper

of Rosenbluth et al. [4] and in the review article of Trubnikov [5]. It is experimentally verified that the
density of the plasma is higher in the neighbourhood of the center of the chamber. In our model we assume

that the collision process is spatially homogeneous, which leads to a slight overestimate of the collisional

rate. The time rate of change of the distribution function faðv; tÞ for particles of species a is given by
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; ð3Þ

where the sum is over all the species of particles (electrons and ions). As usual the summation on repeated

indices is understood. Here

La=b ¼ 4peaeb
ma

� �2

k;

where k is the Coulomb logarithm. In the present work we use the Rosenbluth potentials



Fig. 2. Electron loss region boundary.
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ubðv; tÞ ¼ � 1

4p

Z
R3

fbðv0; tÞ
jv� v0j dv

0; wbðv; tÞ ¼ � 1

8p

Z
R3

jv� v0jfbðv0; tÞdv0;

which were introduced by Trubnikov. These individual functions which refer to particles of one kind b are

more convenient than the potential functions ga and ha given by Rosenbluth et al. The functions ha and ga
can be expressed in terms of ub and wb by means of the relations

ha ¼ �4p
X
b

ma þ mb

mb

Zb

Za

� �2

ub; ga ¼ �8p
X
b

Zb

Za

� �2

wb: ð4Þ

The RF wave is injected into the plasma and heats the electrons. By bounce averaging, this change of

energy can be described as a diffusion process in velocity space: the heating term is derived in the form

ofe
ot

� �
RF

¼ o

ovi
Di;j

ofe
ovj

� �
; ð5Þ

where D is a diffusion tensor (see below).

The full equation for the EDF fe is then

ofe
ot

¼ ofe
ot

� �
coll

þ ofe
ot

� �
RF

þ Si þ Se; ð6Þ

where the source term Si is related to the ionization cross section of the gas. An additional source term Se is
included in order to describe electron injection through secondary emission on the walls. Since the ions are

cold and collisional, the ionic population is assumed to be Maxwellian.

In a previous article [6] a one-dimensional numerical model was used. The domain in spherical polar

coordinates ðv; lÞ was discretized as the union of rectangular subdomains. In each subdomain the Ro-
senbluth potentials were assumed to be isotropic. In addition the heating diffusion tensor was reduced to a

diagonal tensor. With these assumptions Eq. (6) is separable. In each subdomain, the EDF was represented

by its lowest angular eigenfunction and a finite-difference method was used for discretizing the variable v.
The time was discretized by a semi-implicit scheme, i.e., the scheme was implicit but the Rosenbluth po-
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tentials were treated explicitly. The results showed a good qualitative variation of the EDF with the various

parameters [7]. However, there was some quantitative differences between the experimental and the com-

puted values and it was decided to develop a two-dimensional code. In particular the 1D code overestimates

the mean electron energy since all the electrons are assumed to interact with the wave in this model.

Fokker–Planck codes were developed at Livermore by Killeen et al. [8–11] for both mirror and toroidal

plasmas. The Livermore code was then modified by Karney [12]. The standard two-dimensional Fokker–

Planck code of Killeen et al. used finite-differences in ðv; hÞ space. The Rosenbluth potentials were repre-

sented by expansions in Legendre polynomials PjðlÞ. In the computations a finite number of terms in the
Legendre expansions were taken. The equations were time-integrated using either alternating-direction

(ADI) method, or fully implicit differencing. The Rosenbluth potentials were treated explicitely. When

using ADI, several tridiagonal linear systems were obtained. With fully implicit differencing one obtained a

system with a nine-banded matrix. Karney only considered a linearized collision operator and used the

finite difference method for discretizing the derivatives with respect to v and h. The method for advancing

the Fokker–Planck equation in time was the ADI method. An ionic Fokker–Planck code is described in

[13]. The calculation of the Rosenbluth potentials involves solving the Poisson equations

Due ¼ fe and Dwe ¼ ue: ð7Þ

The author uses an uniform grid in the rectangular velocity space. The mass-conserving property of the

Fokker–Planck operator is taken into account in the numerical algorithm by using a conservative finite

difference scheme. Time is discretized by an ADI algorithm.

On the other hand, great efforts were made to construct conservative and entropy decaying schemes for

the Fokker–Planck equation. Such schemes aim to satisfy discrete analogues of the properties of the

continuous equation: these are conservation of mass, momentum and energy, the characterization of the

equilibrium states by Maxwellians and the decay of entropy. We refer to [14–16] for the isotropic case and

to [17] for the 3D case. The application of these schemes to our situation is not straightforward since they
are suited to discretize the whole velocity space, without boundary conditions. Another attempt to con-

struct an energy-conservative scheme is made in [18,19]. The authors propose a new formulation of the

friction term in the Fokker–Planck equation using Maxwell stress tensor formalism. In addition they use an

implicit discretization in time. The results show that energy conservation is improved over standard

(particle-conservative) approaches, particularly in coarse meshes. However, generalizing this scheme for

non-rectangular domains (in cylindrical coordinates) is not trivial because the discretization uses rectan-

gular meshes with a subtle treatment of boundary terms.

It is desirable for our purpose to use a representation that can readily conform to the geometric details of
the velocity domain. One candidate is a logically rectangular, nonorthogonal grid. The nodes of such a grid

can be indexed the same way as a rectangular grid but the corresponding cells are quadrangles. A finite

volume formulation has been the preferred technique for discretizing a problem where conservation is an

important property to be modelled. Since the diffusion tensor D may be discontinuous, a cell centre finite

volume algorithm has been chosen. We use a semi-implicit method to remove the time step restriction for

numerical stability. The algorithm requires the evaluation of surface integrals at every point of a two-di-

mensional grid. For large problems, parallelization is a necessity because of storage requirements. The

numerical algorithm has been implemented on a COMPAQ SC232 parallel computer.
This paper is organized as follows. In Section 2 we derive a finite volume approximation to the Fokker–

Planck equation for use on a quadrangular mesh in spherical geometry. We describe our implementation of

a semi-implicit time integration algorithm. In Section 3 we provide results of numerical experiments. We

show the effects of various input parameters on the plasma performance (electron density, confinement

time, electron mean energy and absorbed power). The results are summarized and conclusions are drawn in

Section 4.
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2. Approximation to the Fokker–Planck equation

2.1. The Fokker–Planck equation for the EDF

The appropriate kinetic equation for the EDF feðv; tÞ is
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where the sum is over all the ions and where the region Ue is (see (2)):

Ue ¼ v : 1

(
� l2 >

1

Rm

1

 
�
v2pe
v2

!)
: ð9Þ

It is necessary to specify feðv; 0Þ as an initial condition

feðv; 0Þ ¼ fe;0ðvÞ; v 2 Ue: ð10Þ

The boundary condition is

feðv; tÞ ¼ 0; v 2 oUe; t > 0: ð11Þ

The electron density is given by

neðtÞ ¼
Z
Ue

feðv; tÞdv: ð12Þ

Concerning the source terms Si and Se two possible mechanisms are considered.

(1) The ionization in the volume of the plasma produces electrons as follows:

Siðv; tÞ ¼ n0vðjvjÞ
Z
Ue

feðv0; tÞr0!iðjv0jÞjv0jdv0: ð13Þ

We have restricted ourselves to single ionization of neutrals. The ionization cross section of the atoms r0!i

is given by Lotz in [20]. Then n0 is the neutral density and v is a shape function satisfying

vðvÞ ¼ 0 if v > vpe and 4p
Z vpe

0

vðvÞv2 dv ¼ 1: ð14Þ

The electrons produced by ionization are cold but the exact distribution is not known: we have chosen

vðvÞ ¼ c
v
vpe

�
� 1

�2

if v6 vpe; ð15Þ

where c is a constant determined by (14).

(2) As they leave the plasma by entering the loss cone, the electrons hit the walls of the chamber. They

induce secondary electrons as follows:

Seðv; tÞ ¼ avðjvjÞ dne
dt

����
lc

: ð16Þ
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Here dne
dt

��
lc
stands for the electrons flux through the boundary of the loss cone:
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where n ¼ ðn1; n2; n3Þ is the vector of unit outward normal to the boundary oUe. The secondary emission

coefficient a depends on the material of the wall. The secondary electrons are cold and for simplicity we use

the same shape function vðvÞ as for the electrons produced by ionization.

The ions are assumed to form a Maxwellian background

fiðv; tÞ ¼ fiðv; tÞ ¼
niðtÞ

2pkTi=mið Þ3=2
e�ðmi=2kTiÞv2 ; ð18Þ

where k is the Boltzmann�s universal constant, Ti is the temperature and where ni is the density for ions of

species i: we assumeX
i

ZiniðtÞ ¼ neðtÞ: ð19Þ

Since the ionic population is Maxwellian, the ionic Rosenbluth potentials are isotropic
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2.2. The spherical coordinate system

The transformation of (8) to spherical polar coordinates ðv; lÞ has been given by Rosenbluth et al. [4].

With our assumption of azimuthal symmetry, the equation for the EDF feðv; l; tÞ is
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for ðv; lÞ 2 U0
e; t > 0. Here the domain U0

e is defined by
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This domain is shown in Fig. 3.

The initial condition (10) becomes

feðv; l; 0Þ ¼ fe;0ðv; lÞ; ðv; lÞ 2 U0
e ð25Þ

and the boundary condition (11) can be written

feðv; l; tÞ ¼ 0 if vpe 6 v6 vlim and l ¼ llcðvÞ; t > 0: ð26Þ

In addition we set

feðv; l; tÞ ¼ 0 if v ¼ vlim; 06l6 llcðvlimÞ; t > 0; ð27Þ

and

ofe
ol

ðv; 0; tÞ ¼ 0; if 06 v6 vlim; t > 0: ð28Þ

The last condition is a result of the requirement that the distribution be symmetric with respect to l ¼ 0.

The coefficients avv; avl; alv; all and av; al are given by
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Fig. 3. Velocity domain U0
e.
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Here the Rosenbluth potentials can be given in terms of two-dimensional integrals
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with KI and XI defined in terms of the complete elliptic integrals K and E (see [21]) as follows:
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Evaluation of the coefficients defined in (29)–(33) requires derivatives of the Rosenbluth potentials. The

derivatives of ui and wi may be obtained through differentiation of (20) and (21). To obtain derivatives of

ue and we requires differentiation of Kðv0; l0; v; lÞ and Xðv0; l0; v; lÞ with respect to v and l. This is done

analytically.

The formulas for the components of the diffusion tensor D in spherical coordinates are given in the book

of Killeen et al. [11]. We focus on whistler wave electron cyclotron resonance (ECR) heating in mirror
geometry, as the wave is injected parallel to the magnetic axis, which favours its coupling to the whistler

mode. Bernstein wave heating is not considered here, as this would require a perpendicular launching of the

wave. Additionally we only consider the fundamental resonance. In this setting, we obtain
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Here the quantity D is given by
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D ¼ e2
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where E is the amplitude of the fluctuating RF electric field,
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where Bres is the magnetic induction evaluated at the resonance, which gives
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f being the frequency of the wave and v/ being the phase velocity of the wave. Additionally sc is the effective
correlation time,
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where ðoB=ozÞres is the gradient of the magnetic field at the resonance. The following parabolic profile is used:

BðzÞ ¼ Bmin 1

�
þ 4z2

L2

�
; ð50Þ

where Bmin corresponds to the center of the mirror and L is a characteristic length of the magnetic field: this

formula is a good approximation of the true field. It follows
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Finally sB is the bounce-period and satisfies in this case
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The main feature of ECR heating is the resonant interaction between electrons and the RF wave. Only the
electrons passing through the resonant region are heated and diffused by the RF wave. Therefore the RF

diffusion coefficients are taken to be zero for l < l1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=n0

p
. Some resonant processes are still pos-

sible in the region B < B0 or l < l1, like tangent resonance (see [11]); they are not considered in the present

paper since we assume that the RF wave is completely absorbed in the region B > B0 (see [24]).
2.3. Velocity discretization

We wish to solve Eq. (22) in the domain U0
e. We do this by converting the integro-differential equation to

an algebraic equation using a finite volume method in velocity space and a semi-implicit scheme in time.
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First, we establish a logically rectangular grid by dividing v and l into J and L pieces, respectively (see

Fig. 4). Since the RF diffusion coefficients are set to zero for l < l1, the line l ¼ l1 is a grid line. On the

domain 06 v6 vlim we have a mesh denoted by vjþ1=2; 06 j6 J . On each interval ½0;minðllcðvjþ1=2Þ; 1Þ� we
use a mesh denoted by ljþ1=2

‘þ1=2; 06 ‘6L.
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‘�1=2 þ ljþ1=2

‘þ1=2

�
; ð55Þ
dvj ¼ vjþ1=2 � vj�1=2; ð56Þ
dlj
‘þ1=2 ¼ ljþ1=2

‘þ1=2 � lj�1=2
‘þ1=2; dljþ1=2

‘ ¼ ljþ1=2
‘þ1=2 � ljþ1=2

‘�1=2: ð57Þ

Following the method presented in [22], we construct the finite volume approximation by integrating (22)

over each cell and using Gauss� Theorem to convert integrals over cells into integrals over cell boundaries.

This procedure allows exact conservation of particles. However energy conservation is not guaranteed. It is

shown in [19] that energy conservation in an energy-conservative algorithm is better than in a particle-

conservative, non-energy-conservative scheme, but the advantage may be lost in fine meshes. Our algorithm

is well-adapted to parallel computers (see below) and this allows mesh refinement. We use a semi-implicit
method for time integration. If the time step is Dt, then tn ¼ nDt and f n

j;‘ is the approximation to the EDF at

the center pj;‘ ¼ ðvj; lj;‘Þ of the cell Qj;‘ at time tn. We write

xj;‘

Dt
f nþ1
j;‘

�
� f n

j;‘

�
¼ /j;‘;nþ1

j;‘þ1=2 � /j;‘;nþ1

j;‘�1=2 þ /j;‘;nþ1

jþ1=2;‘ � /j;‘;nþ1

j�1=2;‘ þ xj;‘Sn
j;‘: ð58Þ
Fig. 4. The numerical grid.
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Here xj;‘ is the volume of the cell Qj;‘:

xj;‘ ¼
Z
Qj;‘

v2 dvdl; ð59Þ

and

/j;‘;nþ1

j;‘þ1=2 ¼ uj;‘;nj;‘þ1=2 � r
�

þ anj;‘þ1=2

�
f j;‘;nþ1
e ðpj;‘þ1=2Þ; ð60Þ
/j;‘;nþ1

jþ1=2;‘ ¼ uj;‘;njþ1=2;‘ � r
�

þ anjþ1=2;‘

�
f j;‘;nþ1
e ðpjþ1=2;‘Þ; ð61Þ
Sn
j;‘ ¼ Sn

i ðvjÞ þ Sn
e ðvjÞ; ð62Þ

where

uj;‘;nj;‘þ1=2 ¼
 

� dlj
‘þ1=2 v2aj;‘;nvv

� �
ðpj;‘þ1=2Þ þ dvj ð1

�
� l2Þaj;‘;nlv

�
ðpj;‘þ1=2Þ;

� dlj
‘þ1=2 ð1

�
� l2Þaj;‘;nvl

�
ðpj;‘þ1=2Þ þ dvj

ð1� l2Þ2

v2
aj;‘;nll

 !
ðpj;‘þ1=2Þ

!
; ð63Þ
uj;‘;njþ1=2;‘ ¼ dljþ1=2
‘ v2aj;‘;nvv

� �
ðpjþ1=2;‘Þ; ð1

��
� l2Þaj;‘;nvl

�
ðpjþ1=2;‘Þ

�
; ð64Þ
anj;‘þ1=2 ¼ �dlj
‘þ1=2ðv

2anvÞðpj;‘þ1=2Þ þ dvj ð1
�

� l2Þanl
�
ðpj;‘þ1=2Þ; ð65Þ
anjþ1=2;‘ ¼ dljþ1=2
‘ ðv2anvÞðpjþ1=2;‘Þ; ð66Þ

and

pj;‘þ1=2 ¼ vj; l
j
‘þ1=2

� �
; pjþ1=2;‘ ¼ vjþ1=2; l

jþ1=2
‘

� �
: ð67Þ

Here the coefficients avv; avl; alv; all and av; al are computed at time tn. Since the components of the diffusion

tensor D are discontinuous, the mesh cell indices j; ‘ indicate that the corresponding coefficient uses the

values of D on the cell Qj;‘. Next we must specify the way in which the combinations of fe and its derivatives
are to be computed at the edges of the cells in terms of the values of fe at the centers of the cells.

We start with horizontal edges. Let pdown be the point where the half-line pj;‘þ1=2 � suj;‘;nj;‘þ1=2; s > 0 in-

tersects one edge of the hexagon of vertices pj�1;‘; pj;‘; pjþ1;‘; pjþ1;‘þ1; pj;‘þ1 and pj�1;‘þ1. The value f
nþ1
down of fe at

pdown ¼ pj;‘þ1=2 � sdownu
j;‘;n
j;‘þ1=2 is approximated by a linear combination of the values of fe at the neigh-

bouring vertices. The term /j;‘;nþ1

j;‘þ1=2 is discretized as follows:

/j;‘;nþ1

j;‘þ1=2 �
f j;‘;nþ1

j;‘þ1=2 � f nþ1
down

sdown
þ anj;‘þ1=2f

j;‘;nþ1

j;‘þ1=2: ð68Þ

The formula for /j;‘þ1;nþ1

j;‘þ1=2 is similar:

/j;‘þ1;nþ1

j;‘þ1=2 �
f nþ1
up � f j;‘þ1;nþ1

j;‘þ1=2

sup
þ anj;‘þ1=2f

j;‘þ1;nþ1

j;‘þ1=2 : ð69Þ
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The values f j;‘;nþ1

j;‘þ1=2; f
j;‘þ1;nþ1

j;‘þ1=2 and /j;‘;nþ1

j;‘þ1=2;/
j;‘þ1;nþ1

j;‘þ1=2 are obtained by adding continuity requirements:

f j;‘;nþ1

j;‘þ1=2 ¼ f j;‘þ1;nþ1

j;‘þ1=2 ; ð70Þ
/j;‘;nþ1

j;‘þ1=2 ¼ /j;‘þ1;nþ1

j;‘þ1=2 : ð71Þ

Fig. 5 illustrates the scheme.

The discretization on vertical edges is similar. Boundary conditions slightly modify the preceding al-

gorithm.
The expressions for the coefficients ð1� l2Þanl through v2aj;‘;nvv are complicated and these coefficients must

be evaluated at the edges of the cells in terms of the values f n
j;‘. The computation of these coefficients

represents a high percentage of the total number of operations required. Since the structure of each of the

five coefficients is quite similar, we only consider the detailed evaluation of one of them. We approximate

ð1
�

� l2Þanl
�
ðpj;‘þ1=2Þ � � Le=e

2p

X
k;m

Klk;m
j;‘þ1=2f

n
k;m; ð72Þ

where

Klk;m
j;‘þ1=2 ¼

Z
Qk;m

ð1
�

� l2Þ oK
I

ol

�
v0; l0; vj; l

j
‘þ1=2

� �
dl0v02 dv0: ð73Þ

Since the integrands have a relatively low degree of regularity, a quasi-Monte Carlo (QMC) method was

chosen to compute the integrals. The accuracy of a QMC method with N points is OðlogðNÞ=NÞ , which can

be compared (in case of smooth functions) with the accuracy of a compound trapezoidal rule (see [23]). The

calculation is easily parallelized. The device is taken to propagate primarily in the v direction, and this

choice necessitates the use of many more computation cells in the v direction than in the l direction. A

parallel decomposition is performed in the v direction. The computational domain is partitioned into Npro

subdomains, where Npro is the number of processors, and each subdomain is assigned to a processor. Each
processor holds coefficients Klk;m

j;‘þ1=2 for indices j belonging to the corresponding sudomain. In every time

step each processor can compute the coefficient ðð1� l2ÞanlÞðpj;‘þ1=2Þ on edge centers pj;‘þ1=2 interior to the

processor�s computational area. This step does not involve any communication among the processors and is
Fig. 5. The discretization on an horizontal edge.
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therefore performed in parallel. Second, after each processor completes its task, interprocessor commu-

nications are performed and all the approximations f nþ1
j;‘ are computed concurrently on all processors.
3. Computational results and discussion

In order to validate the numerical method, we first solve a simplified problem. We consider a plasma of

electrons and Helium ions. Both populations are Maxwellian. There is no heating, and no source term. The
plasma potential is set to a high value (500 V), so that the electron losses are negligible. The ion temperature

Ti is taken to 200 eV. The initial electron temperature is Teðt ¼ 0Þ ¼ 5 eV. The temperature Te is changing,
due to interaction with ions. The theoretical equation approximating the evolution of Te is given in [3]:

dTe
dt

¼ c
Ti � Te

Te þ Time=mið Þ3=2
; ð74Þ

with some constant c. Comparison between this solution and the results of computation is given in Fig. 6:

we see that the computed values converge towards the theoretical temperature as the mesh is refined in v.
No influence of the mesh size in l was observed.

The algorithm described above has been applied to a typical ECRIS plasma calculation. Helium was

chosen as the neutral gas: the ionization source is described by (13), where the value of rHe!Heþ is taken in
[20]. The neutrality condition niðtÞ ¼ neðtÞ is assumed to be satisfied throughout the simulation. Losses and

confinement times are computed only for electrons. In order to account for the ambipolar nature of losses

in a real mirror plasma, a fixed ambipolar electrostatic potential (plasma potential) U was imposed re-

tarding the electrons. For calculating the RF diffusion coefficients Bmin was fixed at 0.435 T and L was fixed

to be equal to 0.3 m in (50). The frequency f of the wave was fixed to 18 GHz.

The numerical grid consists of 200 meshes in v and 40 meshes in l. The v-mesh was taken to be uniform

between 0 and vpe (100 meshes). The l-mesh was taken to be uniform between 0 and l1 (15 meshes) and

between l1 and 1 (25 meshes): see Fig. 4. With the use of the semi-implicit method the algorithm becomes
stable; the time step was usually chosen to be Dt ¼ 10�4 s. It was found that smaller time steps do not

change the results for the stationary state. The typical input parameters are listed in Table 1. Fig. 7 depicts

the influence of the mesh size on the evolution of electron density in time. The mesh choice 200� 40 ap-

pears to be a compromise between accuracy and cost, since finer grids result in minor improvements.

We study the effect of changing one of these parameters on the plasma performance, i.e., the electron

density ne, the confinement time
Fig. 6. Evolution of electron temperature in time: convergence with the mesh size.



Table 1

Physical dimensions for ECRIS simulations

Symbol Description Value

N0 Time independent neutral (He) density 4� 1011 cm�3

E RF electric field of the pumping wave 3000 V/m

U Plasma potential 20 V

a Secondary emission coefficient 0.1

Rm Magnetic mirror ratio 2

v/ RF wave phase velocity 1010 cm/s

Fig. 7. Evolution of electron density in time: influence of the mesh size.
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se ¼
ne

dne
dt

��
lc

; ð75Þ

the electron mean energy e and the absorbed power Pe (that is the power evacuated by electrons through the

loss cone).

3.1. Influence of the RF wave electromagnetic field

Plasma heating and ionization of neutrals strongly depend on the diffusion of electrons in the velocity

space. The diffusion caused by the RF electromagnetic field dominates the diffusion due to collisions in a

wide range of RF electric field values. In Fig. 8 we show the behaviour of the electron density, confinement
time, electron mean energy and absorbed power as the amplitude of the RF wave electric field is varied. In

Fig. 8(a) we see that the electron density first increases, then saturates, and finally decreases: the particles

are more and more efficiently heated as the input power is increased, but they are also scattered into the loss
Fig. 8. (a) Electron density and confinement time, (b) electron mean energy and absorbed power as functions of the RF wave electric

field.
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cone with more and more efficiency, thus limiting the performance of the source. In Fig. 8(b) we observe the

same behaviour for the absorbed power; however, the maximum of the absorbed power is reached at a

value higher than the maximum of the density, since the power is a second order momentum of the EDF,

while the density is a first order momentum. The saturation of the performance is always observed in an

ECRIS. Fig. 8(b) also indicates the influence of the RF power on the electron mean energy. It rapidly

increases and then saturates: as the RF power increases, the electrons created by ionization are rapidly

heated and lost at high energy and they do not contribute to any increase of density or energy. This rapid

saturation was observed in the experiments [25,26]. The confinement time, as shown in Fig. 8(a), has a
behaviour and a typical value consistent with these experiments.

In Fig. 9 we show the change of the EDF with time. The initial distribution is Maxwellian, at a tem-

perature of 15 eV and a density of 109 cm�3. We choose a time step Dt ¼ 10�5 s. The results at

t ¼ 2� 10�3 s are shown in Fig. 9(a). We see a strong electron diffusion in the resonance region. The steady-

state EDF is shown in Fig. 9(b): we see that the collisional diffusion establishes a quasi-homogeneous angle

distribution in the region l < l1, which is not influenced by the RF field, while the overall shape of the EDF

in the region l > l1 does not change as the calculation proceeds, since the resonant RF diffusion dominates

here.
In order to compare the results given by the present 2D algorithm with those given by a previous 1D

method [6], we have performed 1D calculations with the same input parameters. The results of Fig. 10 are in

good qualitative agreement with those described in Fig. 8. The explanation of the quantitative differences is

clearly shown in Fig. 9. In contrast with what happens in 1D computations, in 2D calculations only a part

of the electrons is involved in RF resonant diffusion. Consequently, the same results are obtained with

larger electric fields. From this results that the absorbed power derived in the 2D code is smaller than in the
Fig. 9. (a) Contours of the EDF at t ¼ 2� 10�3 s, (b) contours of the steady-state EDF, both in logarithmic scale.

Fig. 10. 1D computations: (a) electron density and confinement time, (b) electron mean energy and absorbed power as functions of the

RF wave electric field.
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1D calculations. In the next sections, we present results of computations when other parameters are varied.

They are also in good qualitative agreement with the results of 1D computations. It is interesting to observe

that the electron confinement times computed by 1D and 2D simulations are rather close from each other,

in the range of weak RF electric fields: see Fig. 11. This is due to the fact that the Coulomb collisional losses

for v � vpe exceed the RF losses for v � vU: see [27]. A simple estimation of the collisional lifetime, given in

the same reference, agrees well with our computed electron confinement time.

3.2. Influence of the mirror ratio, the neutral density and the RF wave frequency

Fig. 12(a) shows the increase of density and confinement time when the mirror ratio is increased, all

other parameters being kept constant. The mirror ratio is varied by changing Bmax. The order of magnitude

of the confinement time is in good agreement with the measurements already presented in [27]. In Fig. 12(b)
the electron mean energy is shown to increase with increasing mirror ratio, which is normal, as the loss term

is reduced. The same figure shows the power absorbed by the electrons, versus the mirror ratio: this power

is low when the mirror ratio is low because the density of the plasma created is low, and it increases at

higher mirror ratios as the density and energy increase. All these results are similar to those we obtained

using a 1D simulation [6]. In the 2D case, the steady-state values are more sensitive to the mirror ratio: this

could be explained by the fact that the electron losses through the loss cone are more accurately described

by the 2D simulation. There is also another reason: in the 2D case the Bmin and B0 are fixed while Bmax is

varied; this is done in order to obtain the same gradient of the steady state magnetic field at the resonance.
Consequently, the mirror ratio Rm is varied, while the ratio n0 ¼ B0=Bmin is kept constant: only the upper
Fig. 11. Confinement time: comparison between 1D and 2D computations.

Fig. 12. (a) Electron density and confinement time, (b) electron mean energy and absorbed power as functions of the mirror ratio.
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part of the velocity domain is changed (see Fig. 3). In the limiting case, when Rm only slightly differs from

n0, the electrons are heated very close to the loss cone boundary.

Fig. 13(a) shows the behaviour of the electron density and confinement time as the neutral density is

varied. We see that the electron density monotonically increases as the neutral gas pressure increases. Such

a behaviour was observed in the Quadrumafios source [27]. We also see that the higher the neutral density,

the lower the confinement time, which explains why it is necessary to work at low neutral pressure to obtain

multiply charged ions (MCI). A similar behaviour was predicted using the 1D-code [6, Fig. 6]. The value of

the confinement time obtained (at low neutral density) is in very good agreement with the experimental
results obtained in [27], and with the values of the experimental ionic confinement times presented in [28].

Fig. 13(b) shows the dependence of the mean energy and absorbed power on the neutral pressure: the

higher the neutral pressure, the lower the mean energy; in order to produce high charges it is necessary to

have large electron energies to overcome the ionization potentials and highly energetic electrons can only be

produced at low pressures. These results are consistent with results of the 1D-code.

For the next simulations, the phase velocity of the RF wave is no longer kept constant, but is related to

the plasma parameters as follows:

v/
c
¼ 1

0
@ þ

f 2
pe

f 2

c
vT

 !2=3
1
A

�1=2

; ð76Þ

where f 2
pe / ne is the electron plasma frequency and vT is an efficient electron thermal velocity (in practice,

vT is deduced from the electron mean energy). We have slightly modified the expression for v/ given in [6],
taking into account that v/ tends to c as ne goes to zero. Eq. (76) is added into the code, so that the phase

velocity becomes a function of the other plasma quantities. Fig. 14(a) shows the electron density and

confinement time versus RF frequency. The electron mean energy and the absorbed power are shown in
Fig. 13. (a) Electron density and confinement time, (b) electron mean energy and absorbed power as functions of the neutral density.

Fig. 14. (a) Electron density and confinement time, (b) electron mean energy and absorbed power as functions of the RF frequency.
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Fig. 14(b). These two figures show that high frequencies are well suited to the production of multiply

charged ions. These results are also consistent with 1D-results, but, again, with absolute values slightly

different. This shows again that the two codes are in qualitative agreement between each other, and also

consistent with the experiments.

3.3. Influence of the plasma potential and of the coefficient of secondary emission

The plasma potential is not an input parameter for the experimentalist. Physically the plasma potential is

automatically established from the quasi-neutrality condition or, in the steady-state case, by equating

electron and ion losses. Therefore, in our calculations, the main role of the plasma potential is to regulate

electron losses in the following manner: the electrostatic potential confines all the electrons with energy

smaller than eU independently from the pitch angle. Moreover, even for electrons with higher energy, the
plasma potential facilitates the confinement by lowering their longitudinal velocity. As a result the loss cone

is modified: see Fig. 3.

In Fig. 15 we show the behaviour of the electron density, confinement time, electron mean energy and

absorbed power as the plasma potential is artificially changed. Different values of plasma potential can be

considered as reflecting different physical situations, for example different types of neutral gas used. We see

that increasing the plasma potential causes an increase of the electron density as a consequence of a better

electron confinement in the region of large ionization cross section (close to the plasma potential). On the

other side, the higher the potential the higher the ratio of electrons of low energy in the distribution.
Therefore, the electron mean energy and electron confinement time decrease as a consequence of higher

collisional rate in the low energy region.

We see almost the same behaviour in Fig. 16, which shows the variation of the electron density, con-

finement time, electron mean energy and absorbed power as the coefficient a is changed. The secondary
Fig. 15. (a) Electron density and confinement time, (b) electron mean energy and absorbed power as functions of the plasma potential.

Fig. 16. (a) Electron density and confinement time, (b) electron mean energy and absorbed power as functions of the secondary

emission coefficient.
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emission acts like a pump: it gives back lost electrons, which have already been heated, to the low energy

part of the EDF. In contrast to the plasma potential, the coefficient of secondary emission can be changed

by technical means (for example by changing the material of the walls).

3.4. Afterglow

At the end of the heating process, near steady-state, the RF wave electric field sustains an EDF which is

far from being Maxwellian, as demonstrated in Fig. 9(b). The EDF is approximately isotropic for l < l1

and abruptly falls beyond l1. Assuming a short relaxation time, based on the effective electron–ion collision

time (see [3]):

sei ¼
ffiffiffiffiffiffi
me

p

p
ffiffiffi
2

p
kniZ2

i e
4

mev2

2

� �3=2

; ð77Þ

one can guess a rapid filling of the region l > l1 by the electrons when the RF field is turned off; and as a

consequence of the higher electron density near the loss cone boundary, electron losses will increase. We

have modeled this situation and the results are depicted in Fig. 17: the time step was Dt ¼ 10�6 s. The

plasma is first heated by a RF electric field of 3000 V/m and reaches steady-state. At t ¼ 100:2 ms the

electric field falls down exponentially with a characteristic time of 30 ls. The characteristic electron pitch

angle diffusion time sei is approximately 10 ls for 100 eV electrons. We see that during a short time interval
of � 10 ls, electron losses fall down: that can be attributed to instantaneous drop of electron losses due to

scattering in the loss cone by the RF wave for v � v/. Then, electron losses increase during � 20 ls, that is
until the RF wave disappears. This increase is due to strong electron diffusion towards the region l > l1.

The second peak of electron losses at t ¼ 100:4 ms can be explained by a more efficient ionization in the low

energy region after turning off the RF power. This change in electron losses will affect the ion losses because

of the necessary neutrality of the plasma and ion losses are proportional to ion current. This increase of the

electron losses is similar to the well known increase of ion current (afterglow) produced under similar

conditions: see [29]. We think that it may be the same phenomenon despite the short impulse duration (in
comparison with the ion current impulse duration). The difference can be explained by the delayed ion

response to electron losses: electron losses are governed by fast processes like pitch angle diffusion and the

falling of the RF power, while the ion characteristic time is determined by the collisional diffusion in the

physical space. Note that Heþ ions were used in the computations: a higher peak of electron losses can be

expected in the case of ions with larger Zis.
Fig. 17. The time evolution of electron losses as the RF electric field is turned off (arrow).
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4. Conclusions

We have presented a new version of a Fokker–Planck code adapted to the physics of ECR plasmas.

This code uses a new method for the resolution of the full integro-differential Fokker–Planck equation

with a quasilinear heating term, well adapted to a parallel computer. This code shows the same quali-

tative results of our earlier 1D code, which is a new validation of the results obtained with that older

code. However this code is much more powerful: (i) the values of the absorbed RF power derived with

the 2D code are much closer to the experimental values, as the EDF is described much more precisely; (ii)
the sensitivity of the results with the mirror ratio is much greater, which is again consistent with ex-

perimental results; (iii) it is shown that the position of the resonant field with respect to the minimum and

maximum magnetic field influences the results, as also observed. The influence of the (fixed) plasma

potential has been studied. Eventually, a kind of afterglow effect has been discovered, which may be

related to the observed enhancement of the ionic current as the RF is switched off. Nevertheless the

present code does not permit the calculation of the ion charge-state distribution. For doing this, it is

required to compute the time evolution of the ionic population. The next step of the modelisation should

be the development of a fully self-consistent (i.e. with a variable plasma potential) code for the calculation
of the performances of ECRIS.
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